
UNIVERSITY OF TWENTE

The Basics - Web Hacking
SQL-injection, XSS, path traversal and other techniques used for web hacking

Thijs van Ede (t.s.vanede@utwente.nl)

UNIVERSITY OF TWENTE

Web - Basic process

2

UNIVERSITY OF TWENTE

Web - Basic process

3

Client

UNIVERSITY OF TWENTE

Web - Basic process

4

Server

UNIVERSITY OF TWENTE

HTTP(S): GET/POST data

Web - Basic process

5

UNIVERSITY OF TWENTE

HTTP(S): GET/POST data

Web - Basic process

6

Backend (PHP, NodeJS,
CMS, Django, etc)

processes request and
returns response

UNIVERSITY OF TWENTE

HTTP(S): GET/POST data

Web - Basic process

7

Backend (PHP, NodeJS,
CMS, Django, etc)

processes request and
returns response

HTTP(S): response data
(HTML/CSS/JS)

UNIVERSITY OF TWENTE

Web - Basic process

8

- Show content to user
- Execute javascript code
- Store local content (e.g., cookies)

UNIVERSITY OF TWENTE

Web hacking - How can we exploit this process?

9

UNIVERSITY OF TWENTE

Web hacking - How can we exploit this process?

10

We have access
to everything on
the client-side

UNIVERSITY OF TWENTE

Web hacking - How can we exploit this process?

11

We try to get
access to the
server side

UNIVERSITY OF TWENTE

Web hacking - How can we exploit this process?

12

Access local data that should
not be sent to the client:
1. Inspect source (ctrl+U)
2. Inspect cookies (F12)
3. Deobfuscate data

(https://deobfuscate.io/)

UNIVERSITY OF TWENTE

Web hacking - How can we exploit this process?

13

Bypass/inject client-side processing
& communication:
1. Local JavaScript checks
2. Send custom requests & data

(Python requests/ scapy)

UNIVERSITY OF TWENTE

Web hacking - How can we exploit this process?

14

Try to access resources (especially the
ones that should not be accessible):
1. Common files/directories (Gobuster)
2. Guess backend software (Gobuster)
3. Path traversal (Demo)

https://vm-thijs.ewi.utwente.nl/ctf/traversal.asp?page=index.html

UNIVERSITY OF TWENTE

Web hacking - How can we exploit this process?

15

Exploit insecure
implementations
(depends on backend)

UNIVERSITY OF TWENTE

Challenges
● Demo

○ https://vm-thijs.ewi.utwente.nl/ctf/traversal.asp?page=index.html

● Challenges
○ overthewire.org - Natas
○ tryhackme.com - OWASP Top 10

● Tools & Libraries:
○ Python requests
○ Python scapy
○ Gobuster

https://vm-thijs.ewi.utwente.nl/ctf/traversal.asp?page=index.html
https://overthewire.org/wargames/natas/
https://tryhackme.com/room/owasptop10
https://docs.python-requests.org/en/master/index.html
https://scapy.readthedocs.io/en/latest/
https://tools.kali.org/web-applications/gobuster

UNIVERSITY OF TWENTE

Input sanitization

UNIVERSITY OF TWENTE

Unsanitized input

18

● Web services should treat user input as text, never as code!

UNIVERSITY OF TWENTE

Unsanitized input

19

● Web services should treat user input as text, never as code!
● What happens if you treat it as code?

UNIVERSITY OF TWENTE

Unsanitized input

20

● Web services should treat user input as text, never as code!
● What happens if you treat it as code?

○ Gain access to the website’s database (SQL-injection)

UNIVERSITY OF TWENTE

Unsanitized input

21

● Web services should treat user input as text, never as code!
● What happens if you treat it as code?

○ Gain access to the website’s database (SQL-injection)
○ Run javascript code in other user’s browser (XSS)

UNIVERSITY OF TWENTE

Unsanitized input

22

● Web services should treat user input as text, never as code!
● What happens if you treat it as code?

○ Gain access to the website’s database (SQL-injection)
○ Run javascript code in other user’s browser (XSS)
○ Execute submitted code locally (RCE)

UNIVERSITY OF TWENTE

SQL-injection

UNIVERSITY OF TWENTE

SQL-injection - The Basics

24

● User data is trusted and gets passed to a
database without (proper) checks.

UNIVERSITY OF TWENTE

SQL-injection - The Basics

25

● User data is trusted and gets passed to a
database without (proper) checks.

● Example - Website login

UNIVERSITY OF TWENTE

SQL-injection - The Basics

26

● User data is trusted and gets passed to a
database without (proper) checks.

● Example - Website login

email = thijs@email.com
password = P@ssw0rd

UNIVERSITY OF TWENTE

SQL-injection - The Basics

27

● User data is trusted and gets passed to a
database without (proper) checks.

● Example - Website login

email = thijs@email.com
password = P@ssw0rd SQL query

UNIVERSITY OF TWENTE

SQL-injection - The Basics

28

● User data is trusted and gets passed to a
database without (proper) checks.

● Example - Website login

email = thijs@email.com
password = P@ssw0rd SQL query

name = Thijs
grade = 7

UNIVERSITY OF TWENTE

SQL-injection - The Basics

29

● User data is trusted and gets passed to a
database without (proper) checks.

● Example - Website login

email = thijs@email.com
password = P@ssw0rd SQL query

name = Thijs
grade = 7Hi Thijs, your grade is 7

UNIVERSITY OF TWENTE

SQL-injection - The Basics

30

● User data is trusted and gets passed to a
database without (proper) checks.

● Example - Website login
● Maliciously craft input to gain access

email = thijs@email.com
password = P@ssw0rd SQL query

name = Thijs
grade = 7Hi Thijs, your grade is 7

UNIVERSITY OF TWENTE

SQL-injection - The Basics

31

● User data is trusted and gets passed to a
database without (proper) checks.

● Example - Website login
● Maliciously craft input to gain access

SELECT `name`, `grade`
FROM `users`
WHERE
email = ‘<email>’
AND
password = ‘<password>’

UNIVERSITY OF TWENTE

SQL-injection - The Basics

32

● User data is trusted and gets passed to a
database without (proper) checks.

● Example - Website login
● Maliciously craft input to gain access

SELECT `name`, `grade`
FROM `users`
WHERE
email = ‘<email>’
AND
password = ‘<password>’

SELECT `name`, `grade`
FROM `users`
WHERE
email = ‘<email>’
AND
password = ‘incorrect’

FALSE

UNIVERSITY OF TWENTE

SQL-injection - The Basics

33

● User data is trusted and gets passed to a
database without (proper) checks.

● Example - Website login
● Maliciously craft input to gain access

○ By adding a ’ character, we close password string
and inject our own code that evaluates to TRUE.

SELECT `name`, `grade`
FROM `users`
WHERE
email = ‘<email>’
AND
password = ‘<password>’

SELECT `name`, `grade`
FROM `users`
WHERE
email = ‘<email>’
AND
password = ‘incorrect’ OR ‘1’=’1’

TRUE

UNIVERSITY OF TWENTE

SQL-injection - The Basics

34

● User data is trusted and gets passed to a
database without (proper) checks.

● Example - Website login
● Maliciously craft input to gain access

○ By adding a ’ character, we close password string
and inject our own code that evaluates to TRUE.

● Input should be sanitized:
incorrect\’ OR \‘1\’=\’1incorrect’ OR ‘1’=’1

UNIVERSITY OF TWENTE

SQL-injection - The Basics

35

● User data is trusted and gets passed to a
database without (proper) checks.

● Example - Website login
● Maliciously craft input to gain access

○ By adding a ’ character, we close password string
and inject our own code that evaluates to TRUE.

● Input should be sanitized:

● Methods differ per language, e.g. for PHP:
○ mysqli_real_escape_string()

incorrect\’ OR \‘1\’=\’1incorrect’ OR ‘1’=’1

UNIVERSITY OF TWENTE

SQL-injection - Syntax

36

● Syntax must be correct!

UNIVERSITY OF TWENTE

SQL-injection - Syntax

37

● Syntax must be correct!
● Differs per database, common ones are:

○ MySQL
○ SQLite
○ PostgreSQL
○ MS SQL server
○ Oracle

UNIVERSITY OF TWENTE

SQL-injection - Syntax

38

● Syntax must be correct!
● Differs per database, common ones are:

○ MySQL
○ SQLite
○ PostgreSQL
○ MS SQL server
○ Oracle

● SQL-injection can sometimes be executed through GET parameters

UNIVERSITY OF TWENTE

SQL-injection - UNION attack

39

● Not limited to the selected Columns and Table

UNIVERSITY OF TWENTE

SQL-injection - UNION attack

40

● Not limited to the selected Columns and Table
● UNION attack

UNIVERSITY OF TWENTE

SQL-injection - UNION attack

41

● Not limited to the selected Columns and Table
● UNION attack

○ Returns the combination of multiple queries.

UNIVERSITY OF TWENTE

SQL-injection - UNION attack

42

● Not limited to the selected Columns and Table
● UNION attack

○ Returns the combination of multiple queries.
○ Used to chain queries and extract data from other Columns and Tables

UNIVERSITY OF TWENTE

SQL-injection - UNION attack

43

SELECT `name`, `grade`
FROM `users`
WHERE
email = ‘<email>’
AND
password = ‘incorrect’ AND ‘0’=’1’

● Not limited to the selected Columns and Table
● UNION attack

○ Returns the combination of multiple queries.
○ Used to chain queries and extract data from other Columns and Tables

UNIVERSITY OF TWENTE

SQL-injection - UNION attack

44

SELECT `name`, `grade`
FROM `users`
WHERE
email = ‘<email>’
AND
password = ‘incorrect’ AND ‘0’=’1’

Empty

● Not limited to the selected Columns and Table
● UNION attack

○ Returns the combination of multiple queries.
○ Used to chain queries and extract data from other Columns and Tables

UNIVERSITY OF TWENTE

SQL-injection - UNION attack

45

SELECT `name`, `grade`
FROM `users`
WHERE
email = ‘<email>’
AND
password = ‘incorrect’ AND ‘0’=’1’

UNION

SELECT * FROM `other_table` WHERE ‘1’=’1’

Empty

● Not limited to the selected Columns and Table
● UNION attack

○ Returns the combination of multiple queries.
○ Used to chain queries and extract data from other Columns and Tables

UNIVERSITY OF TWENTE

SQL-injection - UNION attack

46

● Not limited to the selected Columns and Table
● UNION attack

○ Returns the combination of multiple queries.
○ Used to chain queries and extract data from other Columns and Tables

SELECT `name`, `grade`
FROM `users`
WHERE
email = ‘<email>’
AND
password = ‘incorrect’ AND ‘0’=’1’

UNION

SELECT * FROM `other_table` WHERE ‘1’=’1’

Empty

Returns `other_table`

UNIVERSITY OF TWENTE

SQL-injection - UNION attack

47

● Not limited to the selected Columns and Table
● UNION attack

○ Returns the combination of multiple queries.
○ Used to chain queries and extract data from other Columns and Tables

● Limitation: each query must return the same number of Columns

UNIVERSITY OF TWENTE

SQL-injection - Finding tables and fields (MySQL)

48

● We need to know what we are looking for.

UNIVERSITY OF TWENTE

SQL-injection - Finding tables and fields (MySQL)

49

● We need to know what we are looking for.
● Which Tables are in the database?

○ SELECT table_schema, table_name FROM information_schema.tables

UNIVERSITY OF TWENTE

SQL-injection - Finding tables and fields (MySQL)

50

● We need to know what we are looking for.
● Which Tables are in the database?

○ SELECT table_schema, table_name FROM information_schema.tables

● Which Fields are in a table?
○ SELECT table_name, column_name FROM information_schema.columns

WHERE table_name = ‘table_we_are_looking_for’

UNIVERSITY OF TWENTE

Demo & Challenges

● Demo: https://vm-thijs.ewi.utwente.nl/ctf/sql

● Challenges
○ picoctf.org: Web Gauntlet 1, 2 & 3

■ https://play.picoctf.org/practice/challenge/88?category=1&page=2
■ https://play.picoctf.org/practice/challenge/174?category=1&page=2
■ https://play.picoctf.org/practice/challenge/128?category=1&page=3

● Tools (recommended for actual CTF competitions, not these challenges):
○ BurpSuite (https://portswigger.net/burp)
○ SQLmap (sqlmap.org)

https://vm-thijs.ewi.utwente.nl/ctf/sql
https://play.picoctf.org/practice/challenge/88?category=1&page=2
https://play.picoctf.org/practice/challenge/174?category=1&page=2
https://play.picoctf.org/practice/challenge/128?category=1&page=3
https://portswigger.net/burp
http://sqlmap.org

UNIVERSITY OF TWENTE

Cross-site scripting (XSS)

UNIVERSITY OF TWENTE

XSS - The basics

53

● Inject a malicious piece of javascript into a webpage

UNIVERSITY OF TWENTE

XSS - The basics

54

● Inject a malicious piece of javascript into a webpage
● Users submit text to a webpage which will then be shown to other users

UNIVERSITY OF TWENTE

XSS - The basics

55

● Inject a malicious piece of javascript into a webpage
● Users submit text to a webpage which will then be shown to other users

○ Social media post

UNIVERSITY OF TWENTE

XSS - The basics

56

● Inject a malicious piece of javascript into a webpage
● Users submit text to a webpage which will then be shown to other users

○ Social media post
○ Forum

UNIVERSITY OF TWENTE

XSS - The basics

57

● Inject a malicious piece of javascript into a webpage
● Users submit text to a webpage which will then be shown to other users

○ Social media post
○ Forum

● Submitted text contains HTML formatting including a piece of javascript code
<script> // malicious code </script>

UNIVERSITY OF TWENTE

XSS - The basics

58

● Inject a malicious piece of javascript into a webpage
● Users submit text to a webpage which will then be shown to other users

○ Social media post
○ Forum

● Submitted text contains HTML formatting including a piece of javascript code
<script> // malicious code </script>

● Example

Hi Thijs

username = Thijs

UNIVERSITY OF TWENTE

XSS - The basics

59

● Inject a malicious piece of javascript into a webpage
● Users submit text to a webpage which will then be shown to other users

○ Social media post
○ Forum

● Submitted text contains HTML formatting including a piece of javascript code
<script> // malicious code </script>

● Example

Hi Thijs

username = Thijs

UNIVERSITY OF TWENTE

XSS - The basics

60

● Inject a malicious piece of javascript into a webpage
● Users submit text to a webpage which will then be shown to other users

○ Social media post
○ Forum

● Submitted text contains HTML formatting including a piece of javascript code
<script> // malicious code </script>

● Example

Hi

username = <script>alert(‘XSS’)</script>

UNIVERSITY OF TWENTE

XSS - Challenges

61

● Find injectable input fields

UNIVERSITY OF TWENTE

XSS - Challenges

62

● Find injectable input fields
○ Check whether <, >, or “ characters are allowed

UNIVERSITY OF TWENTE

XSS - Challenges

63

● Find injectable input fields
○ Check whether <, >, or “ characters are allowed
○ Check whether <, >, or “ are replaced by <, >, "

UNIVERSITY OF TWENTE

XSS - Challenges

64

● Find injectable input fields
○ Check whether <, >, or “ characters are allowed
○ Check whether <, >, or “ are replaced by <, >, "

● Circumvent inadequate escaping

UNIVERSITY OF TWENTE

XSS - Challenges

65

● Find injectable input fields
○ Check whether <, >, or “ characters are allowed
○ Check whether <, >, or “ are replaced by <, >, "

● Circumvent inadequate escaping
○ Client side escape before submitting

UNIVERSITY OF TWENTE

XSS - Challenges

66

● Find injectable input fields
○ Check whether <, >, or “ characters are allowed
○ Check whether <, >, or “ are replaced by <, >, "

● Circumvent inadequate escaping
○ Client side escape before submitting
○ Not replacing all necessary characters

UNIVERSITY OF TWENTE

XSS - Challenges

67

● Find injectable input fields
○ Check whether <, >, or “ characters are allowed
○ Check whether <, >, or “ are replaced by <, >, "

● Circumvent inadequate escaping
○ Client side escape before submitting
○ Not replacing all necessary characters
○ Exploiting user generated code

UNIVERSITY OF TWENTE

XSS - Challenges

68

● Find injectable input fields
○ Check whether <, >, or “ characters are allowed
○ Check whether <, >, or “ are replaced by <, >, "

● Circumvent inadequate escaping
○ Client side escape before submitting
○ Not replacing all necessary characters
○ Exploiting user generated code

● Maximum input size

UNIVERSITY OF TWENTE

XSS - Challenges

69

● Find injectable input fields
○ Check whether <, >, or “ characters are allowed
○ Check whether <, >, or “ are replaced by <, >, "

● Circumvent inadequate escaping
○ Client side escape before submitting
○ Not replacing all necessary characters
○ Exploiting user generated code

● Maximum input size
○ Use JQuery

UNIVERSITY OF TWENTE

XSS - Attacks

70

● Annoy users

UNIVERSITY OF TWENTE

XSS - Attacks

71

● Annoy users
○ Constant popups

UNIVERSITY OF TWENTE

XSS - Attacks

72

● Annoy users
○ Constant popups
○ Self retweeting tweet

UNIVERSITY OF TWENTE

XSS - Attacks

73

● Annoy users
○ Constant popups
○ Self retweeting tweet

● Steal credentials

UNIVERSITY OF TWENTE

XSS - Attacks

74

● Annoy users
○ Constant popups
○ Self retweeting tweet

● Steal credentials
○ Listen on input fields

UNIVERSITY OF TWENTE

XSS - Attacks

75

● Annoy users
○ Constant popups
○ Self retweeting tweet

● Steal credentials
○ Listen on input fields
○ Steal cookies

UNIVERSITY OF TWENTE

XSS - Attacks

76

● Annoy users
○ Constant popups
○ Self retweeting tweet

● Steal credentials
○ Listen on input fields
○ Steal cookies
○ Steal session tokens

UNIVERSITY OF TWENTE

Challenges

https://alf.nu/alert1

https://alf.nu/alert1

UNIVERSITY OF TWENTE

Remote Code Execution

UNIVERSITY OF TWENTE

Remote Code Execution

79

● Depends on the server backend, e.g.,

UNIVERSITY OF TWENTE

Remote Code Execution

80

● Depends on the server backend, e.g.,
○ Prototype pollution (NodeJS/JavaScript)

UNIVERSITY OF TWENTE

Remote Code Execution

81

● Depends on the server backend, e.g.,
○ Prototype pollution (NodeJS/JavaScript)
○ Local File Inclusion (Various)

UNIVERSITY OF TWENTE

Remote Code Execution

82

● Depends on the server backend, e.g.,
○ Prototype pollution (NodeJS/JavaScript)
○ Local File Inclusion (Various)
○ Reverse shell (Various)

UNIVERSITY OF TWENTE

Remote Code Execution

83

● Depends on the server backend, e.g.,
○ Prototype pollution (NodeJS/JavaScript)
○ Local File Inclusion (Various)
○ Reverse shell (Various)

● Uploaded file/code is processed insecurely, e.g.,

UNIVERSITY OF TWENTE

Remote Code Execution

84

● Depends on the server backend, e.g.,
○ Prototype pollution (NodeJS/JavaScript)
○ Local File Inclusion (Various)
○ Reverse shell (Various)

● Uploaded file/code is processed insecurely, e.g.,
○ PHP include

UNIVERSITY OF TWENTE

Remote Code Execution

85

● Depends on the server backend, e.g.,
○ Prototype pollution (NodeJS/JavaScript)
○ Local File Inclusion (Various)
○ Reverse shell (Various)

● Uploaded file/code is processed insecurely, e.g.,
○ PHP include
○ PHP passthru

UNIVERSITY OF TWENTE

Remote Code Execution

86

● Depends on the server backend, e.g.,
○ Prototype pollution (NodeJS/JavaScript)
○ Local File Inclusion (Various)
○ Reverse shell (Various)

● Uploaded file/code is processed insecurely, e.g.,
○ PHP include
○ PHP passthru

● Used functions are vulnerable

UNIVERSITY OF TWENTE

Remote Code Execution

87

● Depends on the server backend, e.g.,
○ Prototype pollution (NodeJS/JavaScript)
○ Local File Inclusion (Various)
○ Reverse shell (Various)

● Uploaded file/code is processed insecurely, e.g.,
○ PHP include
○ PHP passthru

● Used functions are vulnerable
● Google terms to use: RCE <backend function/language>

UNIVERSITY OF TWENTE

Demo & Exercises

● Resources
○ https://github.com/swisskyrepo/PayloadsAllTheThings
○ https://www.revshells.com/

● Challenges
○ hackthebox.eu - Web - Gunship

● Tools:
○ netcat (nc) (https://portswigger.net/burp)

https://github.com/swisskyrepo/PayloadsAllTheThings
https://www.revshells.com/
https://hackthebox.eu
https://portswigger.net/burp

