
An Introduction to
Reverse Engineering
Jerre Starink

Twente Hacking Squad
https://ths.eemcs.utwente.nl/

https://ths.eemcs.utwente.nl/

How to follow along

● Download Python: https://python.org/
● Download Ghidra: https://ghidra-sre.org/ (requires JDK 17 64-bit)
● To run the challenges, you will need Linux or a Linux VM

2

https://python.org/
https://ghidra-sre.org/

public

static

void main()

{..

}

program

What is this program doing?

Warmup
What input do the following programs expect?

4

What input does this program expect? (1/6)

5

def challenge1(input_password):
 if input_password == "THS{secr3t}":
 return True
 else:
 return False

What input does this program expect? (2/6)

6

def challenge2(input_password):

 if len(input_password) == 17 \

 and input_password.startswith("THS{sup3r_") \

 and input_password.endswith("ecr3t}") \

 and input_password[6] == '5':

 return True

 return False

What input does this program expect? (3/6)

7

int challenge3(const char* input_password) {

 if (strlen(input_password) != 8) return 0;

 return input_password[0] == 'T' && input_password[1] == 'H'

 && input_password[2] == 'S' && input_password[3] == '{'

 && input_password[4] == 'w' && input_password[5] == '0'

 && input_password[6] == 'w' && input_password[7] == '}';

}

What input does this program expect? (4/6)

8

const char SECRET[22] = "}setyb_eht_esrever{SHT";

int challenge4(const char* input_password) {

 if (strlen(input_password) != 22) return 0;

 for (int i = 0; i < 22; i++) {

 if (input_password[i] != SECRET[21 - i])

 return 0;

 }

 return 1;

}

What input does this program expect? (5/6)

9

int challenge5(const char* input_password) {

 if (strlen(input_password) != 11) return 0;

 if (strncmp("THS{", input_password, 4) != 0) return 0;

 if (input_password[10] == '}') return 0;

 for (int i = 4; i < 10; i++) {

 if (input_password[i] < '0' || input_password[i] > '9') return 0;

 if (i > 4 && input_password[i-1] >= input_password[i]) return 0;

 }

 return 1;

}

What input does this program expect? (6/6)

10

00000000: 7f45 4c46 0201 0100 0000 0000 0000 0000 .ELF............

00000010: 0300 3e00 0100 0000 4010 0000 0000 0000 ..>.....@.......

00000020: 4000 0000 0000 0000 c834 0000 0000 0000 @........4......

00000030: 0000 0000 4000 3800 0d00 4000 1e00 1d00 @.8...@.....

00000040: 0600 0000 0400 0000 4000 0000 0000 0000 @.......

00000050: 4000 0000 0000 0000 4000 0000 0000 0000 @.......@.......

00000060: d802 0000 0000 0000 d802 0000 0000 0000

00000070: 0800 0000 0000 0000 0300 0000 0400 0000

00000080: 1803 0000 0000 0000 1803 0000 0000 0000

00000090: 1803 0000 0000 0000 1c00 0000 0000 0000

000000A0: ...

Theory: Compilers

11

Software (Forward) Engineering

12

public static

void main() {

 ...

}

Source Code

Software (Forward) Engineering

13

Compiler

public static

void main() {

 ...

}

Source Code

Software (Forward) Engineering

14

Compiler

public static

void main() {

 ...

}

Source Code

010101010111
110001001110
100111001010
101010110110
101101001010
101010000101

Binary Code

Software (Forward) Engineering

15

GCC / Clang

int main() {

 ...

}

program.c

010101010111
110001001110
100111001010
101010110110
101101001010
101010000101

program

Software (Forward) Engineering

16

javac

public
static void
main() {

 ...
}

Program.java

110110111010
101010001010
001101010100
010111010100
101010101001
011001010010

Program.class

Software (Forward) Engineering

17

MSVC++

int
WinMain() {

 ...
}

program.cpp

010010010101
010001010101
101011010101
111010101010
010101010101
111010111010

program.exe

Software (Forward) Engineering

18

Decompiler?

int
WinMain() {

 ...
}

program.cpp

010010010101
010001010101
101011010101
111010101010
010101010101
111010111010

program.exe

Reverse

Static Analysis
Challenge: REasy (ths.eemcs.utwente.nl)

19

Static Analysis

20

Static Analysis

21

● Computers are deterministic:
○ Everything required to run this program is stored in this program file.
○ This includes all the strings and constants the program uses.

Static Analysis

22

● Computers are deterministic:
○ Everything required to run this program is stored in this program file.
○ This includes all the strings and constants the program uses.

Static Analysis

23

● Computers are deterministic:
○ Everything required to run this program is stored in this program file.
○ This includes all the strings and constants the program uses.

Static Analysis

24

● Computers are deterministic:
○ Everything required to run this program is stored in this program file.
○ This includes all the strings and constants the program uses.

Static Analysis

25

● Computers are deterministic:
○ Everything required to run this program is stored in this program file.
○ This includes all the strings and constants the program uses.

● Binary files have a structure:
○ On Linux: Executable and Linkable Format (ELF).

Static Analysis - ELF Files

● ELF Header

26

ELF Header

Static Analysis - ELF Files

● ELF Header
● Program and Section Header Tables

27

ELF Header

Program Header Table

Section Header Table

Static Analysis - ELF Files

● ELF Header
● Program and Section Header Tables
● Sections

28

ELF Header

Program Header Table

Section Header Table

.text

.rodata

.data

Static Analysis - ELF Files

● ELF Header
● Program and Section Header Tables
● Sections

29

ELF Header

Program Header Table

Section Header Table

.text

.rodata

.data

Code

Constants, lookup
tables etc.

Global
Variables

Static Analysis - ELF Files

● ELF Header
● Program and Section Header Tables
● Sections

30

ELF Header

Program Header Table

Section Header Table

.text

.rodata

.data

Code

Constants, lookup
tables etc.

Global
Variables

Static Analysis

31

● Computers are deterministic:
○ Everything required to run this program is stored in this program file.
○ This includes all the strings and constants the program uses.

● Binary files have a structure:
○ On Linux: Executable and Linkable Format (ELF).

Static Analysis

32

● Computers are deterministic:
○ Everything required to run this program is stored in this program file.
○ This includes all the strings and constants the program uses.

● Binary files have a structure:
○ On Linux: Executable and Linkable Format (ELF).

● Binary files use a known instruction set:
○ Most consumer PCs: x86, x86-64.

Static Analysis

● Computers are deterministic:
○ Everything required to run this program is stored in this program file.
○ This includes all the strings and constants the program uses.

● Binary files have a structure:
○ On Linux: Executable and Linkable Format (ELF).

● Binary files use a known instruction set:
○ Most consumer PCs: x86, x86-64.

33
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html

Static Analysis

● Computers are deterministic:
○ Everything required to run this program is stored in this program file.
○ This includes all the strings and constants the program uses.

● Binary files have a structure:
○ On Linux: Executable and Linkable Format (ELF).

● Binary files use a known instruction set:
○ Most consumer PCs: x86, x86-64.

34
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html

Static Analysis

35

● Computers are deterministic:
○ Everything required to run this program is stored in this program file.
○ This includes all the strings and constants the program uses.

● Binary files have a structure:
○ On Linux: Executable and Linkable Format (ELF).

● Binary files use a known instruction set:
○ Most consumer PCs: x86, x86-64.

Static Analysis Tools

36

Static Analysis Tools

37

● Quick and dirty tools:
○ strings,
○ readelf,
○ objdump.

Static Analysis Tools

38

● Quick and dirty tools:
○ strings,
○ readelf,
○ objdump.

● General purpose tools (including decompilers):
○ Ghidra (https://ghidra-sre.org/),
○ Cutter / rizin / radare2 (https://cutter.re/),
○ angr-management (https://github.com/angr/angr-management),
○ Hex-Rays IDA (https://hex-rays.com/, commercial),
○ Binary Ninja (https://binary.ninja/, commercial).

https://ghidra-sre.org/
https://cutter.re/
https://github.com/angr/angr-management
https://hex-rays.com/
https://binary.ninja/

39
https://ghidra-sre.org/

https://ghidra-sre.org/

Where do you start?

● Before you dive into the code, run the program first and see what happens!

40

Where do you start?

● Before you dive into the code, run the program first and see what happens!
● Look for interesting strings:

○ Prompts (e.g., “Input:”),
○ Error messages (e.g., “Please enter a valid name.”),
○ URLs (e.g., “evil.com”),
○ Paths (e.g., “flag.txt”).
○ Flags (e.g., grep for “THS{”).

41

Where do you start?

● Before you dive into the code, run the program first and see what happens!
● Look for interesting strings:

○ Prompts (e.g., “Input:”),
○ Error messages (e.g., “Please enter a valid name.”),
○ URLs (e.g., “evil.com”),
○ Paths (e.g., “flag.txt”).
○ Flags (e.g., grep for “THS{”).

● Look for interesting symbols:
○ Exported Functions (e.g., main),
○ Imported Functions (e.g., printf, scanf, gets, puts, strcmp, …).

42

Where do you start?

● Before you dive into the code, run the program first and see what happens!
● Look for interesting strings:

○ Prompts (e.g., “Input:”),
○ Error messages (e.g., “Please enter a valid name.”),
○ URLs (e.g., “evil.com”),
○ Paths (e.g., “flag.txt”).
○ Flags (e.g., grep for “THS{”).

● Look for interesting symbols:
○ Exported Functions (e.g., main),
○ Imported Functions (e.g., printf, scanf, gets, puts, strcmp, …).

● Look up documentation, rename variables, help the decompiler.

43

Challenges
● THS (ths.eemcs.utwente.nl)

○ REasy
○ KeyGenie

● HackTheBox (hackthebox.com):
○ Simple Encryptor
○ Exactlon
○ Impossible Password (retired but still a good introductory challenge)

44

Dynamic Analysis

45

Dynamic Analysis

46

● Reading code and trying to understand it takes a lot of time.

Dynamic Analysis

47

● Reading code and trying to understand it takes a lot of time.
● We can also run the program and pause it at specific breakpoints:

○ The program’s current memory and registers can tell you a lot.

Dynamic Analysis

48

SECRET = b'\x12\x86\x01 ... (truncated encrypted data)'

def magic_decrypt_function(data):

 # ... Extremely complicated math-heavy code here ...

 return result

def challenge7(input_password):

 if input_password == magic_decrypt_function(SECRET):

 return True

 else:

 return False

Dynamic Analysis

49

SECRET = b'\x12\x86\x01 ... (truncated encrypted data)'

def magic_decrypt_function(data):

 # ... Extremely complicated math-heavy code here ...

 return result

def challenge7(input_password):

 if input_password == magic_decrypt_function(SECRET):

 return True

 else:

 return False If we can pause the program right after
the “magic_function” call, the correct

password should be visible in memory.

Dynamic Analysis

50

● Reading code and trying to understand it takes a lot of time.
● We can also run the program and pause it at specific breakpoints:

○ The program’s current memory and registers can tell you a lot.

GDB Cheat Sheet

51

● Start a new GDB instance: gdb /path/to/your/file
● Common GDB commands:

Run/Restart Program run, r, starti

Pause Execution Ctrl+C

Continue Execution c

Set Breakpoint b *0x55557812, b *main, b *main+123

View registers info reg

View memory x /10bx 0x55557812, x /10bx $rsi

Challenges
● THS (ths.eemcs.utwente.nl)

○ REasy
○ KeyGenie
○ break-in

● HackTheBox (hackthebox.com):
○ Simple Encryptor
○ Exactlon
○ Impossible Password (retired but still a good introductory challenge)

52

