
UNIVERSITY OF TWENTE

A short introduction to:
Binary Reverse Engineering
Part 1: Static Analysis

Yoep Kortekaas (y.a.m.kortekaas@utwente.nl)
THS Workshop 11-10-2021

mailto:y.a.m.kortekaas@utwente.nl

UNIVERSITY OF TWENTE

Reverse Engineering - Definition

2

“to disassemble and examine or analyze in detail (a product or device)
to discover the concepts involved in manufacture usually in order to
produce something similar” [1]

[1] https://www.merriam-webster.com/dictionary/reverse%20engineer

UNIVERSITY OF TWENTE

Reverse Engineering - Definition

3

“to disassemble and examine or analyze in detail (a product or device)
to discover the concepts involved in manufacture usually in order to
produce something similar” [1]

To deconstruct a binary executable in order to figure out how the
program behaves, reveal it’s design and extract knowledge, without
having access to the source code of the executable.

[1] https://www.merriam-webster.com/dictionary/reverse%20engineer

UNIVERSITY OF TWENTE

Reverse Engineering - Techniques & Tools

4

Static Analysis
● Find out as much as you can about

an executable by looking at the
(binary) code

● Usually by means of decompilation
● Hard to perform when code is

obfuscated and/or encrypted

Tools:
● Strings
● Radare2
● Ghidra
● ...

Dynamic Analysis
● Find out as much as you can about

an executable by interacting with the
program in a controlled environment

● Hard to get a `full picture’ of the
executable under examination

Tools:
● GDB + pwndbg
● pin
● Angr
● ...

UNIVERSITY OF TWENTE

Reverse Engineering - Techniques & Tools

5

Static Analysis
● Find out as much as you can about

an executable by looking at the
(binary) code

● Usually by means of decompilation
● Hard to perform when code is

obfuscated and/or encrypted

Tools:
● Strings
● Radare2
● Ghidra
● ...

Dynamic Analysis
● Find out as much as you can about

an executable by interacting with the
program in a controlled environment

● Hard to get a `full picture’ of the
executable under examination

Tools:
● GDB + pwndbg
● pin
● Angr
● ...

UNIVERSITY OF TWENTE

Reverse Engineering - Techniques & Tools

6

Static Analysis
● Find out as much as you can about

an executable by looking at the
(binary) code

● Usually by means of decompilation
● Hard to perform when code is

obfuscated and/or encrypted

Tools:
● Strings
● Radare2
● Ghidra
● ...

Dynamic Analysis
● Find out as much as you can about

an executable by interacting with the
program in a controlled environment

● Hard to get a `full picture’ of the
executable under examination

Tools:
● GDB + pwndbg
● pin
● Angr
● ...

UNIVERSITY OF TWENTE

Reverse Engineering - Techniques & Tools

7

Static Analysis
● Find out as much as you can about

an executable by looking at the
(binary) code

● Usually by means of decompilation
● Hard to perform when code is

obfuscated and/or encrypted

Tools:
● Strings
● Radare2
● Ghidra
● ...

Dynamic Analysis
● Find out as much as you can about

an executable by interacting with the
program in a controlled environment

● Hard to get a `full picture’ of the
executable under examination

Tools:
● GDB + pwndbg
● pin
● Angr
● ...

UNIVERSITY OF TWENTE

Reverse Engineering - Compilation

8

Source code

UNIVERSITY OF TWENTE

Reverse Engineering - Compilation

9

Source code

UNIVERSITY OF TWENTE

Reverse Engineering - Compilation

10

Source code

Compiler

UNIVERSITY OF TWENTE

Reverse Engineering - Compilation

11

Source code

Compiler

UNIVERSITY OF TWENTE

Reverse Engineering - Compilation

12

Source code

Compiler

11010111
01010110
10100001
11010010
01110001

Binary Executable

UNIVERSITY OF TWENTE

Reverse Engineering - Compilation

13

main.c

GCC / Clang

11010111
01010110
10100001
11010010
01110001

a.out

UNIVERSITY OF TWENTE

Reverse Engineering - Compilation

14

main.java

Javac

11010111
01010110
10100001
11010010
01110001

main.class

UNIVERSITY OF TWENTE

Reverse Engineering - Decompilation?

15

Source code

Compiler

11010111
01010110
10100001
11010010
01110001

Binary Executable

?

UNIVERSITY OF TWENTE

Binary Formats &
System Architecture

UNIVERSITY OF TWENTE

Assumptions

17

The concepts of reverse engineering apply to any operating system, architecture,
programming language, and executable. However, for simplicity we assume:

● Executables running on Linux (kernel >= 2.6)
● Stored in the ELF format (Executable and Linkable Format)
● On a machine running the x86(-64) architecture
● Written in the C language

UNIVERSITY OF TWENTE

Assumptions

18

The concepts of reverse engineering apply to any operating system, architecture,
programming language, and executable. However, for simplicity we assume:

● Executables running on Linux (kernel >= 2.6)
● Stored in the ELF format (Executable and Linkable Format)
● On a machine running the x86(-64) architecture
● Written in the C language

For challenges in other
languages check out
https://decompetition.io/

UNIVERSITY OF TWENTE

ELF structure

19

ELF header: Describes the file type and layout, e.g.
where the program and section headers start + their
size

Program header table: Describes how the executable
should be loaded into memory and gives the system the
information needed to prepare the program for
execution.

Section header table: Describes how the binary is
stored on disk.

.bss: holds uninitialized data of the program

.(ro)data: holds the initialized data of the program

.init: holds initialization instructions of the program

.text: Holds the executable instructions of the programELF on disk

Section
headers

.rodata

.text

...

Program
headers

ELF header

UNIVERSITY OF TWENTE

ELF -> Process

20

EL
F

on
 d

is
k

Section
headers

.data

.text

.bss

Program
headers

ELF header

EL
F

pr
og

ra
m

 s
eg

m
en

ts

lo
ad

ed
 in

 m
em

or
y

w
ith

in
 a

Li

nu
x

pr
oc

es
s.data

.text

.bss

Kernel

Stack

Heap

U
ser

space
K

ernel
space

0x08048000

0xBFF00000

0xC0000000

Low
addresses

High
addresses

UNIVERSITY OF TWENTE

x86-64 Registers
● General Purpose: Common mathematical operations. They store data and

addresses (EAX, EBX, ECX)
● ESP: address of the last stack operation, the top of the stack
● EBP: address of the base of the current function frame (i.e., activation

record)
○ relative addressing

● Control: Control the function of the processor (execution)
○ EIP: address of the next machine instruction to be executed

UNIVERSITY OF TWENTE

Static Analysis Tools

UNIVERSITY OF TWENTE

Static Analysis Tools

23

● strings

● radare2
● Ghidra
● IDA pro

UNIVERSITY OF TWENTE

Challenges

● Hackthebox
○ Impossible Password
○ Exatlon

● Crackmes (https://crackmes.one/)
● Challenge 0 - 4 (https://ths.eemcs.utwente.nl/resources/)

https://crackmes.one/
https://ths.eemcs.utwente.nl/resources/

UNIVERSITY OF TWENTE

Dynamic Analysis Tools

UNIVERSITY OF TWENTE

A short introduction to:
Binary Reverse Engineering
Part 2: Dynamic Analysis

Yoep Kortekaas (y.a.m.kortekaas@utwente.nl)
THS Workshop 18-10-2021

mailto:y.a.m.kortekaas@utwente.nl

UNIVERSITY OF TWENTE

Reverse Engineering - Static Analysis Example

27

UNIVERSITY OF TWENTE

Reverse Engineering - Techniques & Tools

28

Static Analysis
● Find out as much as you can about

an executable by looking at the
(binary) code

● Usually by means of decompilation
● Hard to perform when code is

obfuscated and/or encrypted

Tools:
● Strings
● Radare2
● Ghidra
● ...

Dynamic Analysis
● Find out as much as you can about

an executable by interacting with the
program in a controlled environment

● Hard to get a `full picture’ of the
executable under examination

Tools:
● GDB + pwndbg
● pin
● Angr
● ...

UNIVERSITY OF TWENTE

Reverse Engineering - Techniques & Tools

29

Static Analysis
● Find out as much as you can about

an executable by looking at the
(binary) code

● Usually by means of decompilation
● Hard to perform when code is

obfuscated and/or encrypted

Tools:
● Strings
● Radare2
● Ghidra
● ...

Dynamic Analysis
● Find out as much as you can about

an executable by interacting with the
program in a controlled environment

● Hard to get a `full picture’ of the
executable under examination

Tools:
● GDB + pwndbg
● pin
● Angr
● ...

UNIVERSITY OF TWENTE

Dynamic Analysis:
Concept

UNIVERSITY OF TWENTE

Reverse Engineering - Static Approach

31

Source code Compiler

01001000
01100101
01101100
01101100
01101111

Binary Executable

int main
(...)
{

...
}

Reconstructed
Source code

undefined8
FUN_ADDR
(...) {
 ...
}

Decompiler

THS{...}

Action 1

Action 2A Action 2B

Action 3

Desired
Information

Program Behaviour

UNIVERSITY OF TWENTE

Reverse Engineering - Static Approach

32

Source code Compiler

01001000
01100101
01101100
01101100
01101111

Binary Executable

int main
(...)
{

...
}

Reconstructed
Source code

undefined8
FUN_ADDR
(...) {
 ...
}

Decompiler

THS{...}

Action 1

Action 2A Action 2B

Action 3

Desired
Information

Program Behaviour

UNIVERSITY OF TWENTE

Reverse Engineering - Dynamic Approach

33

Source code Compiler

01001000
01100101
01101100
01101100
01101111

Binary Executable

int main
(...)
{

...
}

THS{...}

Action 1

Action 2A Action 2B

Action 3

Desired
Information

Program Behaviour

GDB
(+ pwndbg)

angr

01001000
01100101
01101100
01101100
01101111

Controlled Environment

UNIVERSITY OF TWENTE

Reverse Engineering - Dynamic Approach

34

Source code Compiler

01001000
01100101
01101100
01101100
01101111

Binary Executable

int main
(...)
{

...
}

THS{...}

Action 1

Action 2A Action 2B

Action 3

Desired
Information

Program Behaviour

GDB
(+ pwndbg)

angr

01001000
01100101
01101100
01101100
01101111

Controlled Environment

UNIVERSITY OF TWENTE 35

UNIVERSITY OF TWENTE

GNU Debugger

UNIVERSITY OF TWENTE

GNU Debugger

37

● Software debugger for most Unix-like systems

● Official support for 12 languages, such as C(++), Go and Rust

● Integrated in multiple IDE’s, such as:
○ CLion
○ Eclipse
○ Visual Studio Code

● Interfaces very nicely with
Python

UNIVERSITY OF TWENTE

Pwndbg

38

● “Vanilla GDB is terrible to use for reverse engineering and
exploit development.”

● Integrates with Ghidra/
Radare2 decompilation

UNIVERSITY OF TWENTE

Pwndbg

39

● “Vanilla GDB is terrible to use for reverse engineering and
exploit development.”

● Integrates with Ghidra/
Radare2 decompilation

UNIVERSITY OF TWENTE

Pwndbg

40

● “Vanilla GDB is terrible to use for reverse engineering and
exploit development.”

● Integrates with Ghidra/
Radare2 decompilation

UNIVERSITY OF TWENTE

Pwndbg

41

● “Vanilla GDB is terrible to use for reverse engineering and
exploit development.”

● Integrates with Ghidra/
Radare2 decompilation

UNIVERSITY OF TWENTE

GDB + pwndbg - Cheatsheet (1)
● file [file] load file [file] into gdb
● set args [args] set arguments of program
● (r)un run program until breakpoint
● (k)ill kill current program
● (b)reak [where] set breakpoint at

○ function_name known function
○ * address memory address

● (i)nfo break display breakpoints
● delete/enable/disable [breakpoint] modify existing breakpoint
● (s)tep, (n)ext advance program by 1 instruction
● (c)ontinue advance program to next break
● finish advance program to end of function call
● (i)nfo give info about program being debugged
● (h)elp [command] print info on command

42

UNIVERSITY OF TWENTE

GDB + pwndbg - Cheatsheet (2)
● (p)rint [expression] Print value of expression

○ variables
○ memory addresses
○ registers
○ arithmetic operations
○ casting / dereferencing

● x/(num)(format)(unit_size) [address] Inspect memory @ address
○ num number of units to print
○ format format character
○ unit_size size of the unit (b/h/w/g)

● dump (binary/ihex) memory [filename] [start_addr] [end_addr]
Dump memory in range [start_addr, end_addr] in binary/ihex format to filename

● shell [command] [string] Execute shell command in gdb

43

UNIVERSITY OF TWENTE

Resources

● Sources
○ GDB (https://www.gnu.org/software/gdb/)
○ Pwndbg (https://github.com/pwndbg/pwndbg)

● Documentation
○ GDB (https://www.gnu.org/software/gdb/documentation/)
○ Pwndbg (https://browserpwndbg.readthedocs.io/en/docs/)

● Cheatsheets
○ Pwndbg features (https://github.com/pwndbg/pwndbg/blob/dev/FEATURES.md)
○ Darkdust cheatsheet (https://darkdust.net/files/GDB%20Cheat%20Sheet.pdf)
○ Brown University cheatsheet

(https://cs.brown.edu/courses/cs033/docs/guides/gdb.pdf)

https://www.gnu.org/software/gdb/
https://github.com/pwndbg/pwndbg
https://www.gnu.org/software/gdb/documentation/
https://browserpwndbg.readthedocs.io/en/docs/
https://github.com/pwndbg/pwndbg/blob/dev/FEATURES.md
https://darkdust.net/files/GDB%20Cheat%20Sheet.pdf
https://cs.brown.edu/courses/cs033/docs/guides/gdb.pdf

UNIVERSITY OF TWENTE

Symbolic Execution

UNIVERSITY OF TWENTE

Symbolic Execution - Concept

46

int foo(int a) {
 if (a < 10) {
 return a;
 if (a > 15) {
 if (a % 2) {
 return 4;
 } else {
 important_func();
 return 0;
 }
 }
 return -1;
}

UNIVERSITY OF TWENTE

Symbolic Execution - Concept

47

int foo(int a) {
 if (a < 10) {
 return a;
 if (a > 15) {
 if (a % 2) {
 return 4;
 } else {
 important_func();
 return 0;
 }
 }
 return -1;
}

a < 10

a > 15

a % 2

return a;

return -1;

return 4;important_func()

return 0;

false

false

false true

true

true

UNIVERSITY OF TWENTE

Symbolic Execution - Concept

48

int foo(int a) {
 if (a < 10) {
 return a;
 if (a > 15) {
 if (a % 2) {
 return 4;
 } else {
 important_func();
 return 0;
 }
 }
 return -1;
}

a < 10

a > 15

a % 2

return a;

return -1;

return 4;

false

false

false true

true

true

!(a < 10)

important_func()

return 0;

UNIVERSITY OF TWENTE

Symbolic Execution - Concept

49

int foo(int a) {
 if (a < 10) {
 return a;
 if (a > 15) {
 if (a % 2) {
 return 4;
 } else {
 important_func();
 return 0;
 }
 }
 return -1;
}

a < 10

a > 15

a % 2

return a;

return -1;

return 4;

false

false

false true

true

true

!(a < 10)

important_func()

return 0;

UNIVERSITY OF TWENTE

Symbolic Execution - Concept

50

int foo(int a) {
 if (a < 10) {
 return a;
 if (a > 15) {
 if (a % 2) {
 return 4;
 } else {
 important_func();
 return 0;
 }
 }
 return -1;
}

a < 10

a > 15

a % 2

return a;

return -1;

return 4;

false

false

false true

true

true

!(a < 10) &&
(a > 15)

important_func()

return 0;

UNIVERSITY OF TWENTE

Symbolic Execution - Concept

51

int foo(int a) {
 if (a < 10) {
 return a;
 if (a > 15) {
 if (a % 2) {
 return 4;
 } else {
 important_func();
 return 0;
 }
 }
 return -1;
}

a < 10

a > 15

a % 2

return a;

return -1;

return 4;

false

false

false true

true

true

!(a < 10) &&
(a > 15) &&
!(a % 2)

important_func()

return 0;

UNIVERSITY OF TWENTE

Symbolic Execution - Concept

52

int foo(int a) {
 if (a < 10) {
 return a;
 if (a > 15) {
 if (a % 2) {
 return 4;
 } else {
 important_func();
 return 0;
 }
 }
 return -1;
}

a < 10

a > 15

a % 2

return a;

return -1;

return 4;

false

false

false true

true

true

!(a < 10) &&
(a > 15) && a = 17
!(a % 2) a = 19

important_func()

return 0;

UNIVERSITY OF TWENTE

Symbolic Execution - angr

53

● Python-based tool for:
○ Creating control-flow graphs
○ Performing symbolic execution
○ Automatically creating ROP chains (more on ROP chains

will be explained during the powning tutorial)

● Powerful tool, however, if not initialized properly, it takes ages to run
○ “State explosion” if (cond1) {

 if (cond2) {
 ...
 if (cond25021) {
 ...
} else {
 if (cond2_2) {
 ...

UNIVERSITY OF TWENTE

Resources

● angr website (https://angr.io/)

● angr documentation (https://docs.angr.io/)

● angr examples (https://github.com/angr/angr-doc/blob/master/docs/examples.md)

● angr API reference (https://angr.io/api-doc/)

https://angr.io/
https://docs.angr.io/
https://github.com/angr/angr-doc/blob/master/docs/examples.md
https://angr.io/api-doc/

