
Reversing with Ghidra
2022-05-09

Disclaimer

● Reverse Engineering is a very personalized process.

● The things we will cover…

○ … are by no means the best method,

○ … nor the most efficient,

○ … nor will they always work for every use case.

Today

● Reversing / solving a challenge based on real Malware.

● Exploring commonly used features of Ghidra.

● Discussing various strategies in Reverse Engineering.

Tools we will be using

● Wireshark (https://www.wireshark.org/)

● Ghidra (https://ghidra-sre.org/)

● Python (https://www.python.org/)

https://www.wireshark.org/
https://ghidra-sre.org/
https://www.python.org/

What is
Reverse Engineering?

What is Reverse Engineering?

● Undoing what the compiler has done.

● Trying to understand what a program does (or has done).

int
main(){
 ...

0010101
1001100
1010101
101

program.c program.exe

Compiler

Decompiler

A problem

● Disassemblers and Decompilers are often wrong!

○ Compilers are better at applying optimizations than decompilers are at reverting them.

○ The process of decompilation approaches the Halting problem.

● Often decompilers need a little help …

○ Decompiler results often need to be cleaned up / corrected.

A bigger problem

https://nakedsecurity.sophos.com/2010/07/27/large-piece-malware/

A bigger problem

https://nakedsecurity.sophos.com/2010/07/27/large-piece-malware/

Don’t try to understand
everything!

Don’t try to understand everything!

● You wonʼt understand everything anyway.

● It is usually a waste of time to understand everything.

○ Majority of the code is standard library / boilerplate code.

○ Even the exact implementation of the relevant code is often irrelevant.

● High-level constructions are more important than implementation details.

● Focus on the end-goal (This can be difficult!)

How do we know
what to focus on?

What is Reverse Engineering (really)?

● Itʼs all about pattern matching and making educated guesses!

○ Ask yourself: “What feature do I expect to be in this program?”

○ Imagine how it might be implemented (roughly).

○ Test your hypothesis by looking for evidence in the decompiler.

■ Strings?

■ Function calls?

■ Data structures?

Let’s dive in

